From Monologue to Dialogue: Natural Language Generation in OVIS*

Mariét Theune
Parlevink Language Engineering Group, University of Twente
P.O. Box 217, 7500 AE Enschede, The Netherlands
theune@cs.utwente.nl

Abstract

This paper describes how a language generation
system that was originally designed for mono-
logue generation, has been adapted for use in
the OVIS spoken dialogue system. To meet the
requirement that in a dialogue, the system’s
utterances should make up a single, coherent
dialogue turn, several modifications had to be
made to the system. The paper also discusses
the influence of dialogue context on informa-
tion status, and its consequences for the gener-
ation of referring expressions and accentuation.

Introduction

Many practical dialogue systems use canned
prompts for output generation. This may be suf-
ficient in restricted domains where only a limited
number of fixed system utterances is required, but
for systems where a high number of varying utter-
ances must be generated, a more advanced form
of natural language generation is required. Ideally,
the chosen generation method should be context-
sensitive, for instance adapting the wording of the
generated utterances to the user’s word choice and
to the current state of the dialogue. In addition, it
should be able to generate not only short system
prompts but also longer stretches of text (e.g., infor-
mation presentations in response to a user’s query).
Finally, in the case of spoken dialogues, it is also
desirable if the natural language generation compo-
nent can produce prosodic information for use by
speech synthesis.

A system that meets the above requirements is
D2S, a concept-to-speech system that was originally
developed for the generation of monologues (van
Deemter & Odijk 1997, Theune et al. 2001). This
paper discusses how D2S was adapted for the gen-
eration of system utterances in a spoken dialogue

*This research was carried out within the Priority Pro-
gramme Language and Speech Technology, sponsored by
NWO (Netherlands Organisation for Scientific Research).

Copyright © 2003, American Association for Artificial In-
telligence (www.aaai.org). All rights reserved.

system called OVIS.

The paper starts with a general overview of the
OVIS system, focusing on its dialogue management,
language and speech generation components. The
next section describes how the use of syntactic tem-
plates in the language generation component had
to be adapted for the generation of dialogue utter-
ances. Then, it is briefly discussed how a dialogue
context may influence referring expression genera-
tion and accent assignment. Finally, some conclud-
ing remarks and future work are presented.

The OVIS system

OVIS! is a Dutch spoken dialogue system that pro-
vides information concerning train connections and
ticket prices. It was developed as part of a Dutch
national research project, the NWO Priority Pro-
gramme Language and Speech Technology. The gen-
eral architecture of the OVIS system is shown in Fig-
ure 1. Below, the system’s dialogue manager and
its interaction with the language generation module
are described, and the language and speech genera-
tion components are introduced. More information
on the other modules of OVIS can be found in Strik
et al. (1997) (speech recognition), van Noord et al.
(1999) (rule-based language analysis) and Bod (1998)
(statistical language analysis).

Dialogue management in OVIS

The OVIS dialogue manager (Veldhuijzen van Zanten
1998) is responsible for coordinating the dialogue
with the user and consulting the database of train
connections and ticket prices. Based on input from
the language analysis module, which interprets the
results from speech recognition, the dialogue man-
ager determines which actions must be carried out
in the next system turn. It then sends a message
to the language generation module (LGM), specify-
ing the information or dialogue act that must be ex-
pressed. The messages refer to a data structure rep-
resenting the information which can be talked about

1 Openbaar Vervoer Informatie Systeem (“Public Trans-
port Information System”)

N

speech speech
recognition generation
language language
9 g database .
analysis generation
\ st /

management

Figure 1: OVIS architecture.

by the user and the system, in the form of a typed
hierarchy of slots and values. Figure 2 shows the
data structure’s route slot, which holds the values
needed to retrieve train time table information from
the database. These values are filled in during the
dialogue with the user.

The messages which the dialogue manager sends
to the LGM for expression can be divided into two
basic classes: dialogue prompts, which are part of
the dialogue in which the system tries to determine
the user’s wishes, and presentations of information
from the database. In this paper, only the gener-
ation of the dialogue prompts is discussed. There
are two general types of dialogue prompts: informa-
tion requests, where the system asks for the details
of the user’s intended journey, and meta-acts, utter-
ances about the dialogue itself that may be used to
deal with communication problems. The most im-
portant meta-act is verification: due to imperfect
speech recognition, the system constantly has to
verify whether it has understood the user’s utter-
ances correctly. Below, a few example messages are
given,? together with the corresponding utterance
generated by the LGM, and an informal description.
All examples in this paper are given in translation.

(1)

Information requests:

DM: theroute.trajectory.origin ??
LGM: From where do you want to leave?
(Open question for the departure station)

2The messages shown in this paper are slightly abbre-
viated: instead of specifying the full path through the
OVIS data structure, they are shown starting from the
level of the route slot.

[Route
[Trajectory
Place
trajector origin : town : {aachen,...,zwolle}
J ¥ suffix : {amstel, ..., zuid}
| destination: Place
[Moment 1
[Date
. day : {1,...,31}
date : month : {jan,...,dec}
moment | year: {2000,...}
[Time
time : hour : {1,...,24}
L minute 1 {0,...,59} i

Figure 2: The route slot.

DM: theprice.class ?| {first | second }
LGM: Do you want to travel first or second class?
(Alternatives question for the travel class)

DM: thereturnitrip.nonent.date.day ?= 3
LGM: Do you want to return on the third?
(Yes-no question for the day of return)

Meta-acts:

DM: theroute.trajectory.origin ?+ asd
LGM: Departure from Amsterdam Central Station?
(Verification of the departure station)

DM: theroute.trajectory.origin.town **uden
LGM: Uden does not have a train station.
(Noting an invalid departure town)

The messages shown in (1) are all ‘simple’ in the
sense that they only involve one slot in the data
structure. Complex messages are also possible, for
instance combining two verifications:

(2)

DM: theroute.(nonent.tinme ?+ 10: 30;
trajectory. destination ?+ nas)
LGM: To Maarssen, at ten thirty?
(Verification of destination and time of travel)

The dialogue manager employs a so-called zoom-
ing strategy: it begins with asking open questions
about slots high up in the hierarchy, but when nec-
essary, it zooms in towards more specific questions
about lower-level slots. For example, at the start of
the dialogue the user is asked what kind of informa-
tion he or she wants; a very high-level open question

which leaves the user a lot of room for initiative.
An experienced user can react by stating all travel
details in one turn, and get the dialogue over with
quickly. A less experienced user, however, could be
at a loss about how to respond. When this is de-
tected, the dialogue manager sends a more specific
message, e.g., asking whether the user is interested
in route or price information. For more details on
this adaptive, mixed-initiative dialogue management
strategy, see Veldhuijzen van Zanten (1998).

Language and speech generation

The system utterances in OVIS are generated by D2S,
a concept-to-speech framework that is to a large ex-
tent domain and language independent. D2S was
originally developed for the DYD (Dial Your Disc)
system, which generates English monologues about
Mozart compositions (van Deemter & Odijk 1997).
D2S also formed the basis for the GoalGetter sys-
tem, which generates Dutch soccer reports (Theune
et al. 2001). In D2S, language and speech gener-
ation form separate, reusable modules, which are
connected through a prosodic component embed-
ded in the language generation module (LGM). The
prosodic component uses contextual and syntac-
tic information provided by language generation to
compute the placement of pitch accents and phrase
boundaries in the generated utterances. This gives a
better prosodic output quality than can be achieved
when feeding plain text into a text-to-speech system.

In the LGM, sentences are generated from so-
called syntactic templates, which combine TAG-like
syntactic structures with conditions that determine
if they are suitable given the current state of the con-
text model. Each generated sentence leads to an up-
date of this model, recording which information has
been expressed, which words have been used, which
discourse objects have been mentioned, etc. Exam-
ples of syntactic templates and their use in OVIS are
given in the next section. In addition to checking
the conditions on the syntactic templates, the con-
text model is used for the generation of referring
expressions. For instance, an anaphoric expression
may be generated when an appropriate antecedent
is found in the context model.

The prosody component of the LGM enriches each
generated sentence with markers for pitch accents
and phrase boundaries. It uses the context model
to determine the information status of the concepts
and entities being referred to: new, given or con-
trastive.> Words expressing new information are
always accented, whereas words expressing given
(previously mentioned) information are deaccented,
except in the case of contrast (Theune 2002). The
exact placement of pitch accents and phrase bound-
aries within a sentence is determined using the syn-

3The last notion is orthogonal to the first two, as both
given and new information may be contrastive.

tactic information from the templates. In-depth dis-
cussions of prosody computation in D2S are given
in Theune et al. (1997) and Theune et al. (2001).

Finally, the speech generation module of D2S
transforms the enriched text string it receives from
the LGM into a speech signal. Two different speech
generation methods are available, both of which
have been used for speech generation in OVIS (in dif-
ferent versions of the system). The first method is
diphone synthesis, which concatenates small speech
segments consisting of the transition between two
adjacent phonemes. The second method, which
offers higher speech quality but less flexibility, is
an advanced form of phrase concatenation. Here,
speech is produced by concatenating phrases of
varying length that have been recorded in different
prosodic versions. Both available methods make use
of the prosodic information provided by the LGM.
More information on speech generation in OVIS can
be found in Klabbers (2000).

The LGM from monologue to dialogue

In OVIS, some of the responsibilities the LGM has
when it is used in ‘monologue mode’ are taken over
by the dialogue manager. In OVIS, it is the dialogue
manager which determines what to say at which
point in the dialogue, leaving it to the LGM to de-
termine how to say it. The practical advantage of
this task division is the strict modularization of the
system, with language-independent dialogue knowl-
edge residing in the dialogue manager, and linguis-
tic knowledge in the generation component. In ad-
dition, this set-up where the LGM has to carry out
the instructions from the dialogue manager as they
come, fits in well with the local, reactive planning
approach of the LGM outlined above. Nevertheless,
to deal with the new demands of language genera-
tion in a dialogue context, several adaptations had
to be made to the LGM’s template selection process.
These are discussed below. First, some example
OVIS templates are presented.

Syntactic templates in OVIS

Figure 3 shows three syntactic templates from OVIS
that can be used for the generation of elliptic verifi-
cation questions. They have been simplified by leav-
ing out some information which is less relevant here
(such as the full syntactic trees). The main elements
of the syntactic templates are the following.

The first element, S, is a syntactic sentence tree
with gaps in it for variable information. Many of
the syntactic trees in the OVIS templates are mini-
mal, in that only the head of the construction is lex-
icalized and the gaps coincide with its arguments.
This holds in particular for verification questions,
which are generally formulated as elliptic utterances
(to keep the system prompts as shorts as possible).
Those in Figure 3 only consist of a PP (e.g., To Am-

sterdam?), of which only the head is lexicalized in
the syntactic tree.

The second element, E, is a list of calls to so-called
Express functions that are used to fill the gaps in the
syntactic tree. Compared to monologue generation,
in OVIS the role of the Express functions is some-
what limited. The most frequently occurring vari-
ables correspond to towns and train stations, and
these are usually referred to by their proper name,
except for rare occasions where the anaphor there
can be used. Other frequent expressions in OVIS are
times and dates.

The third element, C, lists the local conditions on
the syntactic template. These refer to the actions
the LGM has to carry out in the current turn, and
to the context model. For instance, the condition on
Template DestVerif from Figure 3 says that this tem-
plate is applicable when the value of the destination
slot must be verified. The template’s additional con-
ditions on the context model are not shown here.*
After the template has been applied, the LGM up-
dates the context model to record that a verification
question about the destination has been asked. It
also records in which dialogue turn this was done.

The last element shown in Figure 3, L (level),
was added specifically for the purpose of dialogue
prompt generation. It specifies how many slots from
the OVIS data structure are dealt with by the syntac-
tic template. The reason for adding this element is
explained in the next section.

Template DestVerif

S =To <dest>?

E = dest — Express(the_route.trajectory.destination)
C =tobeverified (the_route.trajectory.destination)
L=1

Template TimeVerif

S = At <time>?

E = time — Express(the_route.moment.time)
C =tobeverified (the_route.moment.time)
L=1

Template DestTimeVerif

S = To <dest>, at <time>?

E = dest — Express(the_route.trajectory.destination)
time — Express(the_route.moment.time)

C =tobeverified (the_route.trajectory.destination) A
tobeverified (the_route.moment.time)

L=2

Figure 3: Example OVIS templates (simplified).

4For reasons explained below, this and the other tem-
plates from Figure 3 cannot be used when the system has
attempted to verify the same value(s) in its previous turn.

Saying it all in one turn

When generating dialogue prompts, the LGM faces
the following restrictions: (i) the message from the
dialogue manager should be expressed within one
turn, and (ii)) a turn may contain only one ques-
tion. The reason for the latter restriction is that
a question is a ‘release-turn’ action, i.e., an action
which signifies the end of a turn and indicates that
the other dialogue participant may now take the
floor (see Traum (1994):61). After a question has
been generated, the user generally starts answering
it immediately. Generating more than one question
within a turn is therefore likely to lead to interrup-
tions and confusion.

The above requirements are especially important
when the LGM has to express a message concern-
ing more than one slot from the data structure,
such as (2), where the values of both destination and
time must be verified. In principle, in this situation
all three templates shown in Figure 3 are applica-
ble. In ‘monologue mode’, the LGM would just pick
one of these at random, and would go on selecting
syntactic templates and generating sentences from
them until the entire message has been expressed.
If either Template DestVerif or Template TimeVerif
were to be picked, this strategy would lead to the
generation of two consecutive questions, as in (3).

(3)
LGM: At ten thirty? To Maarssen?

Since these two questions are prosodically sepa-
rated by a final phrase boundary, the user might
assume that the turn ends after the first question,
and start answering too early. To keep this from
happening, the template selection strategy has been
changed so that the LGM always picks the syntac-
tic template that deals with the highest possible
number of slots, thus generating only one, com-
plex question. To achieve this, the level component
L has been added to the syntactic templates, and
the generation algorithm has been adapted so that
during generation, higher level templates are pre-
ferred over lower level ones. In example (2), this
causes Template DestTimeVerif to be chosen for ap-
plication, as it has a higher level (i.e., deals with
more slots) than both other applicable templates.
As a consequence, in (2) one question is generated
that verifies the values of both destination and time,
rather than two consecutive questions as in (3).

An alternative approach would be to use only one
of the two lower-level templates, and stop after the
corresponding question has been generated. How-
ever, this means that the instructions from the di-
alogue manager are not fully carried out. The LGM
only resorts to this when there is no template avail-
able that can express the entire message in one turn.
Such cases are discussed in the next section.

Turn coherence

In principle, a message specified by the dialogue
manager can contain any combination of slots from
the data structure, as in (2). However, some slot
combinations are difficult to express in one coher-
ent system turn. An example is (4), where the LGM is
instructed to verify whether the user wants to have
route information (as opposed to price information),
and whether the user wishes to travel at ten thirty.
These verifications cannot be combined in one ques-
tion without the result being either long and awk-
ward, as in LGM(a), or severely underspecified and
thus incomprehensible, as in LGM(b).

4)

DM: (variant ?+ the_route;
theroute. noment.time ?+ 10: 30)
LGM (a): Do you want to have route information,
and do you want to travel at ten thirty?
LGM (b): Route information, at ten thirty?

To avoid the generation of utterances like LGM(b)
above, and to ensure the coherence of the system ut-
terances, syntactic templates have been constructed
for combinations of related slots only. Two slots are
regarded as related if they share the same mother or
grandmother slot in the OVIS data structure. Intu-
itively, these slots seem to provide the best combi-
nations for complex verification questions,® but the
choice for this specific relation has not been empir-
ically validated. Examples of related slots are origin
and destination (mother: trajectory) and time and des-
tination (grandmother: route).

Since the slots involved in (4) are not consid-
ered to be related, there is no syntactic template
available to verify the values of both slots at once.
Therefore, to express the entire message two differ-
ent syntactic templates must be used, each verifying
the value of one of the specified slots. However, as
was explained in the previous section, first using
one template and then the other is not an option,
as it will result in the asking of two questions in
one turn. Therefore the generation algorithm was
modified to apply the first template that happens
to be selected,’, and then stop upon detection
that a question has been generated. As a result,
only a part of the input message is expressed. To
inform the dialogue manager of this, the LGM sends
a feedback message indicating which part of the
input message has actually been expressed. This is
illustrated in (5), where the feedback from the LGM
to the DM is given below the generated utterance.

>A practical side-effect of this filter is that it greatly
reduces the number of templates to be constructed.

6Since both applicable templates have the same level,
the LGM picks one of them at random.

)

DM: (variant ?+ theroute;
theroute. noment.time ?+ 10: 30)
LGM: At ten thirty?
theroute.nonent.tinme ?+ 10: 30

Context-sensitive template selection

Most of the monologue generation systems in which
D2S has been used can be characterized as ‘info-
tainment’ applications, which are aimed at getting
information across in a pleasant way. In such ap-
plications, having variation in the generated output
is important to keep users from getting bored when
listening to several presentations in succession. One
way of achieving this variation is to make a random
choice between syntactic templates that express the
same content but use different wording. Informa-
tion systems like OVIS lack the entertainment as-
pect: their primary goal is to get information across
to the user as clearly, quickly and efficiently as pos-
sible. In such systems gratuitous variation in the
system output is unwanted, as users may try to in-
terpret this kind of variation as meaningful even
though it is not. In addition, the lack of predictabil-
ity caused by variation may hamper the user’s pro-
cessing of the system utterances.

In OVIS therefore, there is no arbitrary choice be-
tween ‘equivalent’ syntactic templates. This does
not mean, however, that each message is always ex-
pressed using the same template. Different tem-
plates are available that express the same message
using different wording. Which of these is selected,
depends on the dialogue context. This can be illus-
trated by (6), a dialogue fragment in which the di-
alogue manager attempts to verify the value of the
destination slot twice in succession, due to a speech
recognition error. The first time, the LGM expresses
the verification question in the standard way, using
an elliptic utterance. When the user’s answer is not
properly recognized, the dialogue manager repeats
the question. This time, the LGM selects another
template, expressing the verification question using
a more elaborate, non-elliptic formulation.

(6)

DM: theroute.trajectory.destination ?+ nas

LGM: To Maarssen?

User: (?)

DM: theroute.trajectory.destination ?+ nas

LGM: I understood that you want to travel to
Maarssen; is this correct?

User: Yes.

The aim of the formulation of the second veri-
fication question is to clarify the intentions of the
system and to encourage the user to provide a sim-
ple Yes or No answer. Here, the variation in formu-
lation has a clear function in the dialogue: if the

system had used the same wording twice, the user
would probably have reacted in the same way, and
the recognition problem would have persisted.

Information status in dialogues

In ‘monologue mode’, the context model of the LGM
records which information has been expressed by
the system. When referring to this information, the
system may produce a reduced anaphoric expres-
sion, e.g., a deaccented pronoun. The underlying as-
sumption is that information in the context model
does not require emphasis in expression, because
it given, i.e., mutually known to user and system.
However, this assumption cannot be maintained in
a spoken dialogue system. Here, due to imperfect
speech recognition, the system is often not certain
of what is in the linguistic context. This means that
the simple division between new and given informa-
tion is insufficient: some intermediate information
status is required. Below, we discuss how this influ-
ences the generation of referring expressions and
accentuation.

Grounding

In a dialogue, information that has been put for-
ward by one speaker cannot be regarded as imme-
diately ‘known’ by the other. Therefore, in human
dialogues, the speakers continually react to each
other’s utterances, signaling whether or not they un-
derstood the other. This is called grounding (Clark
& Schaefer 1989; Traum 1994): the interactive pro-
cess of adding information to the speakers’ mutual
knowledge or common ground. Grounding typically
proceeds in two phases: a presentation phase in
which one speaker sends some message to his con-
versation partner, and an acceptance phase in which
the other signals whether the message came across
correctly or not. Information introduced by one par-
ticipant is only added to the common ground if it
has been accepted by the other, either by giving ex-
plicit positive feedback such as saying OK or by sim-
ply continuing the conversation.

In OVIS, information that is contributed by the
user is never immediately grounded, i.e., regarded
as known by the system. Instead, the system first
asks a verification question to make sure that there
has been no speech recognition error. The follow-
ing dialogue fragment illustrates the OVIS ground-
ing process.

(7)

User: I'd like to go to Maastricht.

LGM: To Maarssen?

User: No, to Maastricht.

LGM: To Maastricht?

User: Yes, that’s correct.

LGM: From where do you want to leave?

o AN o

In (7)a, the user presents the information that he
or she wishes to travel to Maastricht. In (7)b, the
system asks a verification question to check if it has
recognized the user’s utterance correctly, thereby (i)
signaling to the user that the information presented
in (7)a is not yet grounded (acceptance phase) and
(ii) presenting what the system assumes the user has
said (starting a subordinate presentation phase). In
(7)c the user signals that the system’s assumption
is incorrect (non-acceptance of (7)b) and presents
the correct information once again. Again, the sys-
tem asks a verification question to check if there has
been a speech recognition error. This time, the user
reacts with a confirmation, signaling that the des-
tination has been recognized correctly. (Note that
(7)b-e are part of the overall acceptance phase for
(7)a, but are also involved in subordinate presenta-
tion and acceptance cycles.) Finally, in (7)f) the sys-
tem implicitly shows its acceptance by asking a new
question. All in all, it has taken user and system
five dialogue turns (from (7)b to (7)f) to ground the
information provided by the user in (7)a.

In OVIS, information that has been presented by
the user, but not yet grounded by the system, is as-
signed a special information status: that of pending
information’ (cf. the distinction between grounded
and ungrounded information by Poesio & Traum
(1997) and Matheson et al. (2000)). Clearly, this
information should be represented in the LGM’s
context model, but at the same time it cannot be
regarded as given in the sense of being mutually
known. In the next sections it is discussed how this
new, mixed information status relates to the gener-
ation of referring expressions and accentuation.

Referring expressions

In ‘monologue mode’, the LGM usually refers to
items in the context model using reduced, anaphoric
expressions.? In ‘dialogue mode’, however, the con-
text model contains both information that is given
(grounded) and information that is still pending (not
grounded yet). This raises the question whether
pending information can be anaphorically referred
to as well. As argued by Dekker (1997), Groenendijk
et al. (1997) and Poesio (1998), this is indeed pos-
sible, but only in contexts that do not require the
speaker to have identified the referent (or even to
have committed to its existence). Examples are
questions and a modal statements, such as B(c-d)
in example (8) from Poesio (1998). In assertions, on
the other hand, anaphoric references to pending in-
formation are only marginally acceptable, as shown

“Material introduced by the system is assumed to be
immediately grounded by the user. This simplification
reflects the fact that in general, the system has far more
problems understanding the user than vice versa.

8Given that certain restrictions on the distance be-
tween anaphor and antecedent, and the presence of po-
tential distractors are met (Krahmer & Theune 2002).

by B(a). Before making an assertion, B must first ex-
plicitly signal having grounded (and thus identified
the referent of) A’s utterance. This is done in B(b).

(8)
A: There is an engine at Avon.
B(a): ?? It is red.
B(b): Right / Yeah /I see it. It is red.
B(c): Is it in working conditions?
B(d): It might be used to carry the boxcar.

Based on Allwood (1995) and Clark (1996), Lars-
son (2003) classifies grounding behaviour in terms
of the action level involved: contact, perception, un-
derstanding, or integration. Example (8) deals with
grounding at the level of understanding (which in-
cludes referent identification): all of B’s reactions in-
dicate that B has correctly perceived A’s utterance,
but understanding is only indicated by the explicit
acknowledgement in B(b). An example involving a
problem at the perception level is (9) below. Here,
B cannot use a pronoun or other anaphoric expres-
sion, until A has accepted the repeated material pre-
sented by B (thus solving B’s perception problem).

)
A: There is an engine at Avon.
B: An engine?
A: Yes.
B: (Any of B(b-d) from (8).)

In OVIS, most references to pending information
are like (9) in that they involve the perception level
rather than the understanding level. As illustrated
by (9), in such a situation the use of anaphoric ex-
pressions is impossible until the perceived informa-
tion has been confirmed or corrected. Therefore, the
system always uses a full expression when referring
to pending information, even though the informa-
tion is represented in the context model.

Usually, after the user has confirmed the pend-
ing information, grounding by the system immedi-
ately follows. There are cases, however, where this
does not happen, for example when the user wants
to travel to a town that does not have a train sta-
tion, and therefore cannot be accepted as the value
for the destination slot (see the last example in (1)).
Here, in terms of Larsson’s action levels, the infor-
mation provided by the user has been perceived and
understood, but it cannot be integrated by the sys-
tem and is therefore not grounded. In such cases,
anaphoric expressions may be used without any
problem. This is illustrated in (10) below.

(10)

User: I'd like to go to Uden.

LGM: To Uden?

User: Yes, that’s correct.

LGM: Uden / that town does not have a train station.

Summarizing, cross-speaker anaphoric references
are sometimes permitted for ungrounded informa-
tion, depending on the action level involved. If there
is a problem at the understanding level (identifi-
cation) that precludes grounding, anaphoric refer-
ences are only allowed in the context of a question
or a modal statement. If the problem is at the level
of integration, anaphoric references are always al-
lowed. Finally, in the case of (potential) problems
at the perception level, reduced references are im-
possible; only verbatim repetitions can be used. In
spoken dialogue systems, most grounding problems
are at the perception level, and this strongly limits
the use of cross-speaker anaphora.

Accentuation

Contextually given words are generally deaccented,
except in case of contrast (see Theune (2002)). For
instance, in (8) all occurrences of the pronoun it
would normally be pronounced without a pitch ac-
cent, and if speaker B had said There is another en-
gine at Bath, the word engine would probably have
been deaccented. Still, human speakers sometimes
do accent contextually given, non-contrastive words
in order to signal a problem at either the percep-
tion or the understanding level. Empirical evidence
for this is given by Swerts et al. (1998), who stud-
ied the prosody of repetitive utterances (‘repeats’) in
Japanese. They found that repeats signaling ground-
ing, as in (11), are prosodically distinct from those
signaling a possible communication error, as in (12).
The latter generally have a relatively high pitch, as
well as other marked prosodic features.

(11)

A: and then you transfer to the Keage line ...
B: Keage line
A: which will bring you to Kyoto station

(12)

A: and that is the Keage line ...
B: KEAGE line?
A: that’s right, Keage line

Grice & Savino (1997) studied a corpus of map
task dialogues between speakers of Bari Italian. In
their corpus, accentuation of repeated material oc-
curs if the instruction follower has no confidence in
the instructions, for instance because the instructor
refers to a landmark that is not on the map. Here,
accentuation indicates a problem with understand-
ing (identification) rather than perception.

In short, speakers tend to accent contextually
given information to signal understanding or per-
ception problems. Conversely, deaccentuation usu-
ally signals acceptance at these levels. For the OVIS
system, this means that deaccenting repeated infor-
mation in a verification question is unwanted, as

it may create the impression that the information
is grounded by the system and can no longer be
corrected.” Therefore, the simple strategy of deac-
centing previously mentioned information has been
adapted to make an exception for information that
is being verified.

In cases like (10), where the system cannot inte-
grate (and thus ground) the pending information,
there seem to be two possibilities. Either the system
can use a full, accented referring expression (UDEN)
to convey a lack of confidence or it can use a deac-
cented, reduced description (that town) to indicate
that the referent was successfully identified. Cur-
rently, the system always chooses the first option, to
indicate that the user has provided an invalid value
of the destination slot. As a general rule, in OVIS only
grounded information is deaccented, even though
this restriction may be too strong in some cases. For
examples like (10), it should be empirically tested
which is the best accentuation strategy.

All in all, for accentuation we see a somewhat
similar picture as for referring expressions. Both
deaccentuation and the use of reduced anaphoric
descriptions are permissible across speakers in a di-
alogue. However, when there are potential problems
at the perception level, human speakers generally do
not use deaccented or reduced descriptions when
referring to the other’s utterance. In the OVIS sys-
tem, where misrecognitions are not uncommon, the
same strategy is adopted in order to achieve a natu-
ral dialogue, which runs as smoothly as possible.

Conclusions and future work

This paper has discussed the generation of system
utterances in a spoken dialogue system called OVIS.
The restriction that in a dialogue, the system’s ut-
terances should fit within one coherent dialogue
turn gave rise to several modifications of the LGM.
Due to the strict division between dialogue manage-
ment and language generation, the linguistic and
practical constraints of the LGM cannot be antici-
pated by the dialogue manager, so that sometimes
the LGM can carry out only part of its instructions.
This is somewhat similar to what happens in hu-
man sentence production, where there may be a
mismatch between the speaker’s conceptual inten-
tions and the possibilities of formulation (Kempen
(1977):260). The occasional occurrence of such mis-
matches in OVIS makes it important to send feed-
back from the LGM to the dialogue manager, which
needs to know exactly which message has been con-
veyed to the user, to be able to react correctly to

9This is similar to the effect of the ‘implicit’ verification
questions asked in an earlier version of the OVIS system,
which verified one slot value while asking for the value
of another (e.g., At what time do you want to travel to
Maarssen?). Users often did not realize that the informa-
tion mentioned in such questions could still be corrected.

the user’s subsequent utterance. This required feed-
back seems a reasonable price to pay for a strictly
modular system architecture.

To achieve a smooth and natural dialogue, pro-
ducing context-sensitive system prompts is very im-
portant. Therefore, a brief overview has been given
of the influence of dialogue context on information
status, and its consequences for the generation of
referring expressions and accentuation. One of the
observations that have been put forward is that in
dialogues, an intermediate information status is re-
quired for information that is in the linguistic con-
text but has not yet been grounded (i.e., is not yet re-
garded as mutually known). Grounding is only pos-
sible when the information provided by the user has
been perceived correctly and can be integrated by
the system. In a spoken dialogue system, perception
is often hampered by imperfect speech recognition.
Until the absence of recognition errors has been es-
tablished, the system should not use a deaccented
or reduced description to refer to information that
was provided by the user.

One form of context-sensitivity which is currently
not addressed in the dialogue version of the LGM,
is adapting the wording of the system utterances to
that of the user. In OVIS, the LGM knows which in-
formation has (presumably) been provided by the
user, but not the words that were used to do so.
As a consequence, the system sometimes uses other
words than the user when referring to the same
thing, for instance when the user wants to travel
next Friday and the system subsequently refers to
that date as March the 28th. Such discrepancies
may create the impression that the system is cor-
recting the user, and in the worst case cause consid-
erable confusion. To be able to improve on this, the
LGM should have access to the syntactic analysis of
the user’s utterances, and the generation algorithm
should be adapted so that this information can be
actually used to influence the wording of the gener-
ated prompts. This is left as future work

Finally, it should be noted that prompt design for
OVIS was (partially) based on the results of user
tests with two comparable, commercial Dutch train
information systems (Weegels 2000). The OVIS sys-
tem itself, including the language generation com-
ponent as described in this paper, has not been for-
mally evaluated yet.

Acknowledgements

Thanks are due to the two anonymous reviewers
who provided useful comments on an earlier ver-
sion of this paper, which is based on Chapter 5 from
Theune (2000). Thanks also to Staffan Larsson for
providing me with a draft version of his contribu-
tion to this workshop.

References

Allwood, J. 1995. An activity based approach to
pragmatics. Gothenburg Papers in Theoretical Lin-
guistics 76, University of Goteborg.

Bod, R. 1998. Spoken dialogue interpretation with
the DOP model. In Proceedings of COLING-ACL’98,
138-144.

Clark, H., and Schaefer, E. 1989. Contributing to
discourse. Cognitive Science 13:259-294.

Clark, H. 1996. Using Language. Cambridge: Cam-
bridge University Press.

Deemter, K. v., and Odijk, J. 1997. Context model-
ing and the generation of spoken discourse. Speech
Communication 21(1/2):101-121.

Dekker, P. 1997. On first order information ex-
change. In Benz, A., and Jager, G., eds., Proceedings
of Mundial 97.

Grice, M., and Savino, M. 1997. Can pitch ac-
cent type convey information status in yes-no ques-
tions? In Proceedings of the Workshop on Concept-
to-Speech Generation Systems, ACL/EACL’97, 29-
33.

Groenendijk, J.; Stokhof, M.; and Veltman, F. 1997.
Coreference and modality in the context of multi-
speaker discourse. In Kamp, H., and Partee, B.,
eds., Context Dependence in the Analysis of Linguis-
tic Meaning, 195-216.

Kempen, G. 1977. Conceptualizing and formu-
lating in sentence production. In Rosenberg, S.,
ed., Sentence Production: Developments in Research
and Theory. Hillsdale: Lawrence Erlbaum Asso-
ciates. 259-274.

Klabbers, E. 2000. Segmental and Prosodic Im-
provements to Speech Generation. Ph.D. Disserta-
tion, Eindhoven University of Technology.

Krahmer, E.,, and Theune, M. 2002. Efficient
context-sensitive generation of referring expres-
sions. In van Deemter, K., and Kibble, R., eds., In-
formation Sharing: Reference and Presupposition in
Language Generation and Interpretation. Hillsdale:
CSLI Publications. 223-264.

Larsson, S. 2003. Generating feedback and se-
quencing moves in a dialogue system. In AAAI
Spring Symposium on Natural Language Genera-
tion in Spoken and Written Dialogue. These pro-
ceedings.

Matheson, C.; Poesio, M.; and Traum, D. 2000. Mod-
elling grounding and discourse obligations using
update rules. In Proceedings of the First Conference
of the North American Chapter of the Association
for Computational Linguistics.

Noord, G. v.; Bouma, G.; Koeling, R.; and Nederhof,
M. 1999. Robust grammatical analysis for spoken
dialogue systems. Natural Language Engineering
5(1):45-93.

Poesio, M., and Traum, D. R. 1997. Conversational
actions and discourse situations. Computational
Intelligence 13(3).

Poesio, M. 1998. Cross-speaker anaphora and dia-
logue acts. In Proceedings of the Workshop on Mu-
tual Knowledge, Common Ground and Public Infor-
mation, ESSLLI’98.

Strik, H.; Russel, A.; van den Heuvel, H.; Cuc-
chiarini, C.; and Boves, L. 1997. A spoken dialog
system for the dutch public transport information
service. International Journal of Speech Technology
2:119-129.

Swerts, M.; Koiso, H.; Shimojima, A.; and Katagiri,
Y. 1998. On different functions of repetitive utter-
ances. In Proceedings of ICSLP’98, volume 2, 483-
486.

Theune, M.; Klabbers, E.; de Pijper, J.; Krahmer, E.;
and Odijk, J. 2001. From data to speech: A general
approach. Natural Language Engineering 7(1):47-
86.

Theune, M.; Klabbers, E.; Odijk, J.; and de Pij-
per, J. 1997. Computing prosodic properties
in a data-to-speech system. In Proceedings of
the Workshop on Concept-to-Speech Generation Sys-
tems, ACL/EACL’97, 39-45.

Theune, M. 2000. From Data to Speech: Language
Generation in Context. Ph.D. Dissertation, Eind-
hoven University of Technology.

Theune, M. 2002. Contrast in concept-to-
speech generation. Computer Speech and Lan-
guage 16(3/4):491-531.

Traum, D. 1994. A Computational Theory
of Grounding in Natural Language Conversation.
Ph.D. Dissertation, University of Rochester.

Veldhuijzen van Zanten, G. 1998. Adaptive mixed-
initiative dialogue management. In Proceedings of
IVTTA 1998, 65-70.

Weegels, M. 2000. Users’ conceptions of voice-
operated information services. International Jour-
nal of Speech Technology 3(2):75-82.

